1 minute read

[Paper Review] STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks for Recommender Systems, IJCAI 19, Zhang et al

Goal

Inductive(and Transductive) User-Item rating(Matrix Completion) via GNN

Challenge

  • Generalize model to predict unseen nodes embeddings for cold start problem
    • one-hot vector(embedding look-up table)를 쓰면 unseen node에 대한 generalize가 잘 안 되고, cold-start problem을 야기하는 문제 발생
  • Label leakage issue
    • ex) user1과 item1 사이에 edge가 있을지 여부를 predict하는 task를 풀고 있는데, 애초에 aggregation 과정에서 neighbor의 표현을 토대로 update를 하기 때문에, label leakage가 발생하여 overfitting으로 이어짐

Solution

  • Mask & Reconstruction strategy
  • Sample & Remove strategy

Method

  • STAR-GCN(STAcked and Reconstructed Graph ConvolutionalNetworks)
  • Masked & Reconstruct
    • To generalize embedding for new nodes,
      1. masking some percentage of input nodes
      2. reconstructing the clean node embeddings
  • Sample & Remove
    • rating pairs를 fixed size만큼 샘플링하고, 해당 edge를 graph에서 remove함

alt

  • Multi-Block graph Encoder-Decoder architecture
    • Block = Encoder + Decoder
      • Block Stacking : 각 블록 별로 별개의 parameter 사용
      • Recurrence : parameter sharing for across all blocks
    • Encoder
      • Generate node representations
      • Multi-link GCN aggregator (which is used in GC-MC)
    • Decoder
      • Recover input node embeddings
      • 2-layer fc layers
  • Optimization
    • Jointly training for the rating prediction(main task) and reconstruction(auxiliary) loss

ETC.

  • Inductive와 Transductive 둘 다 가능
    • 지난 번 논문도 그렇고, GNN쪽에서 inductive를 가능케 하기 위한 접근으로 embedding reconstruction을 취하는 경우가 많은 것 같네
  • Task
    • Matrix Completion via GNN
      • Main task : link prediction
      • Auxiliary task : Embedding reconstruction
  • GC-MC 훑어보기
  • 깃허브로 블로그 이사하기!

Source

  • https://www.ijcai.org/proceedings/2019/0592.pdf
  • STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks for Recommender Systems, IJCAI 19, Zhang et al

Leave a comment